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Abstract

In this paper the new micrmodelling approach to the contact problem for a half-space with boundary
imperfections is proposed. The approach is based on a periodic distribution of micro-undulations along the
space boundary and leads to the 2-D mathematical macro-model of the contact problem. The general idea
of the modelling takes into account certain concepts used in the investigation of periodic composite materials
(see e.g. Wozniak, 1993). The resulting model constitutes a generalization of the known Winkler-type model
(see e.g. Shtayerman, 1949). The numerical solution to the special problem shows the boundary imperfections
effect on the contact of bodies. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The known contact problems are usually formulated under the assumption of the perfect contact
interface. However, the experimental investigations carried out on the real body surfaces display
the existence of imperfections which compose the boundary microgeometry. The influence of the
boundary imperfections on the contact problem solution was studied firstly by Shtayerman (1949).
It was supposed phenomenologically that the deformation of a surface micro-undulation is
described by the Winkler model where the microgeometrical parameter has to be obtained exper-
imentally. In this paper a new two-dimensional model for the deformation of a surface micro-
imperfection is obtained in the framework of the analytical micromodelling procedure. The pro-
posed model permits us to investigate analytically the microgeometry of the surface by means of
a certain averaging procedure based on that applied in Wozniak (1993).
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Fig. 1. (a) Geometry of the contact. (b) Model of the micro-folded subboundary layer.

2. Problem formulation

The geometry of the contact on a macro-level is shown in Fig. 1a. The rigid cylindrical punch
of the radius R is pressed by a load P to the elastic half-space with boundary imperfections. The
deformation in the half-space caused by the contact pressure p(x;) is assumed to be plane and
hence the problem is considered in the Cartesian coordinates x,x, where x, > 0 will be referred to
as an elastic half-plane. The friction forces are neglected in the contact area (—ay, a;) and the
boundary of the half-plane for |x,| > «, is free of the external loading.

Following Shtayerman (1949), we assume that the vertical displacement of the imperfected half-
plane boundary may be presented in the form

U (xy) = us(xy) +us(xy), [xi|<a, x,=0 (1)

where u5(x,) are elastic displacements produced by the contact pressure p(x,) and u4(x,) are
displacements due to boundary imperfections in the contact area.
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The elastic displacements are obtained from the solution of the known stationary problem of
the elasticity theory and have the following form (see e.g. Shtayerman, 1949)

1—y [
ué(x1)=7wvj pr@O[—In|x, =<+ CldS, x| <a ()

—a

where v, u are Poisson’s ratio and the shear modulus, respectively, and C is an arbitrary constant.
The analytical form of the displacements u4(x,) will be obtained in Section 3 by the proposed
micromodelling approach to the problem of boundary imperfections in the contact area.

3. Micromodelling of the boundary imperfections

The aim of this Section is to obtain an averaged model of the deformation of the subsurface
layer which takes into account the boundary microgeometry. To this end let us introduce a
subboundary layer of the undulated half-plane bounded by a micro-periodically folded smooth
boundary and the line x, = H, cf Fig. 1b. Hence this layer occupies the region

Q= {(xlax2): [x;] <00, ho(x)) <x, < H}

where /,(x,) is the [-periodic function where / is sufficiently small compared with the half-width of
the contact region a,: / < a, as well as with the length dimension H. In the sequel the layer Q with
the smooth micro-periodically folded boundary (micro-undulated surface) will be treated as a
micro-model of the imperfected boundary of the half-plane introduced in Section 2.

Let u;, ¢;;, 0, be displacements, strains and stresses, respectively, and p, be external forces applied
to the part IT of the aforementioned microfolded boundary; here and in the sequel subscripts i, j,
k,...run over 1, 2 and the summation convection holds. In the framework of the linear elasticity
theory the stationary behaviour of the layer Q is described by:

the strain—displacement relations:

& = UGy (3)
the stress—strain relations:
0, = Ci/'klgk/ “4)

where C;;, are components of the elastic modulate tensor, and the equilibrium equation assumed
here in the form of condition

J 0,0e,;dV = J piou;da ©)
Q I1

which holds for every specified virtual displacement field ou; = du,(x,, x,), such that éu;, = 0, for
X2 = H

In order to perform the modelling procedure we introduce the concept of the /-macrofunction
and that of the micro-shape function (see e.g. Wozniak, 1993). Let F(*) be a real valued function
defined in Q and ¢, stands for a certain small accuracy parameter related to the computation of
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the values of F. Define by ||x"— x"| the distance between points x’, x” in Q. If for every two points
x’, x"eQ such that |x"—x"| </ function F(*) satisfies condition.

|F(x) —F(x")| < &r

then it will be called the /-macro function. If F() satisfies the above condition together with all its
derivatives then it will be called the regular /-macrofunction.
Let /() be l-periodic continuous function defined on R which for every x, € R satisfies conditions

(i) h(x,) e O()),
(i) 1h,,(x)) € O(]),
(iii) <Ay =0,

where
1 [
= ,J fox) dy

is an averaged value of f over (0, /). Under aforementioned condition function A(*) will be called
the micro-shape function.

The proposed micromodelling procedure of the boundary imperfections will be based on the
three following assumptions:

(1) Macro Kinematic Hypothesis states that the displacements in the region Q can be assumed
in the form

ui(xy,x,) = U(xy, X5) +h(x)Q;(x1, x5),  (x,X,)€eQ (6)

where U,, Q; are unknown regular /-macrofunctions, called macro-displacements and correctors,
respectively, and /(x;) is the continuous /-periodic micro-shape function. This function have to be
defined a priori in every problem under consideration.

(2) 2-D Modelling Hypothesis postulates the macrofunctions U;, Q; in the form

Ui(x1, x5) = Wix,)d(x,)
0i(x1,x5) = Vi(xy)d(x>) (7

where W, V; are arbitrary regular macrofunctions independent of x,-coordinate and d(x,) is
postulated a priori decay function defined on (0, H) (see e.g. Vlasov and Leontiev, 1960). The
function d(x,) is sufficiently regular and satisfies and conditions d(0) = 1, d(H) = 0, d,(x,) < 0 for
every x,€(0, H). Thus, the functions W,, V; are, respectively, macrodisplacements and correctors
on the upper boundary of the layer.

(3) Macro Modelling Approximation permits in calculations of averages {*) to neglect terms
of an order ¢ as compared to values of an arbitrary /-macro function F. Under this assumption
eqns (3) together with (6), (7) can be transformed to the following form

811 = (Wl,l +h1 V])d+0(£z>)
er2 =5 [(Wi+hV)d,+(Wai+h, Vy)d]+0(z,)
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&0 = (Wy+hVy)d,+O(e,) 3)

The macro modelling approximation makes it possible to neglect term O(ej) in the formula
JdeQ = <f>J FdQ+O(er) 9)
Q Q

which holds for any integrable /-periodic function f and continuous /-macrofunction F.

Combining formulae (4), (8) with the principle of virtual work (5) and applying the macro
modelling approximation we obtain the governing equations of the 2-D model of the subsurface
layer in the form

R,— Si,l = Di
H, =0 (10)
where pj; are averaged external loads (per length unit of x, = 0) and

(Cppaazsy (Cppiaszy <Ci2k1h,la3>+

+<{Crrhass)
Ci k Ci k Ci q h +
R (Cipaaszy (Ciriay <+<1/C1 ,1Z> . W,
ilk a
S |= e Wi (11)
H (Cirhyas)+ <Ci1k1h,la>+ <Ci1k1h,1h,1a>+ %
i k

+<Cpahassy  +<Cpprhas) +<Cilk2hh,la3>+
+<Cf2k1hh,1a3>+
+<{Cprpahhass ) |

where we have donated

a(x;) = JH dz(x2)dx2:

ho(x1)

a(x,) = JH d(x,)d > (x,) dx,,

ho(x1)

as3(x,) = JH d>(x5)d(x,) dx,

o (X1)

Substituting the right-hand sides of (11) into formulae (10) we arrive at the system of three
differential equations for the macrofunctions W; and three algebraic equations for V. Since / « H
then in calculations of averages in eqns (11) we can neglect terms involving the length parameter
[ as small compared to terms independent of /. Thus, the final form of the model equations will be
given by

~

R—S,, =p
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1-7,- =0 (12)
where
R~i (Cppaazsy (Cpprasy (Cppras h,l > Wi
§f =| {Ciypas) (Ciay <Ci1k1ah,1> Wi, (13)

H~i <Ci1k2a3h,l> <Cilklah,l> <Cilklah,lh,l> Vi

Let us observe the boundary surface with micro-undulations, shown in Fig. 1b, is smooth; this
way the friction forces in the contact area (—a,, a,) will be neglected and the problem becomes
similar to that investigated by Shtayerman (1949). Moreover, following the approach used in
Vlasov and Leontiev (1960) we shall assume that under the normal pressure the horizontal
component of displacements can be neglected as small compared to the normal component. It
means that in the subsequent analysis we shall consider the simplified model in which W, = V, = 0,
but W, #0, V, # 0. Simplified models of this kind have found many applications mainly in
structure—subsoil interaction problems (see e.g. Vlasov and Leontiev, 1960). We also assume that
the layer is homogeneous, i.c.

Cijrr = (040 ;+0,047) + 20,01
where 9,;is Kroneker symbol, 4 and p are Lamé constants.
In this case after modifying assumptions (7) by means W, = V;, = 0, and applying the micro-

modelling procedure similar to that leading to (12), (13), we obtain the following differential
equation for the macrofunction W,

2tW, 1 —kW,y+p, =0 (14)
where

NN

t—2[<a> <a(h,1)2>} k =(A+2w<ass) (15)

It can be seen that equation (14) from a formal point of view is similar to the equation of the
Vlasov model of an elastic subsoil layer (see e.g. Vlasov and Leontiev, 1960, p. 30). The above
equation together with definitions (15) describes on the macro-level the effect of boundary micro-
undulations on contact pressure distribution. This effect depends on the shape of micro-undulations
because coefficient ¢ depends on the derivatives of function /(:). On the other hand from the
definition of # and assumption /., (x,) € O(/) it follows that the value of this coefficient is independent
of [. We deal here with the method of micromodelling similar to that used in the homogenization
of periodic composite materials, where the resulting macro-model are also independent of the cell
size (see e.g. Jikov et al., 1994).

The solution of eqn (14) can be assumed in the form

o0

1
Wi(x)) = 40“] P2(OK(E—x,)d¢ (16)

— o0

where
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_ k
*=\
K() {e g
Z) =
e”, z<0
If
p(x1), x| <o
pa(xy) =
05 |X1| > 0(0
then

1 [
us(xy) = Wi(x)) = WJ P(OK(E—xy)dE (17

—d

The obtained model is characterized by two coefficients k& and ¢ which will be called the
microgeometry parameters. The phenomenological model of the boundary imperfections which
was presented in Shtayerman (1949) can be formally derived from results obtained above by setting
t = 0. In this case

1
us(xy) :Ep(xl)a x| < a (18)

where k has the form (15). It has to be emphasized that the microgeometry parameters k, ¢ are
given here by the explicit analytical formulas (15) where ¢ describes a new effect (postponed in
Shtayerman, 1959) of the deformed boundary curvature on the contact force.

4. Integral equation of the contact problem

By satisfying the boundary condition

X

U (x;) = TR’ x| < a (19)

by the formulae (1), (2) and (17) we obtain the following singular integral equation of the problem

L[ I—v % p) X
4IJQOP(£)K1 (x;—¢)d¢+ - Jaoxl —fdi =R |x1 ] < a (20)
where the kernel K;(z) have the form
e”, z<0
K (2) = _
—e ¥, z=0

The integral equation (2) should be solved together with the equilibrium condition
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J pdé="r 21
and the physical condition for the determination of the contact area
p(£ap) =0 (22)
Introducing dimensionless variables and functions
ap(x,/ay)
s=xifay, 1= Eag, prs) ="

the integral eqn (20) and conditions (21), (22) can be rewritten to the new form

1 1" p*(n) 24 P
ﬁoj (K (s—n) d'7+nj s—n dn = —;a%fs, ls] <1 (23)
—1 —1 H
1
J primdn =1 (24)
—1
pH(+£) =0 (25)
where
e, z<0 1 /2t a, W
* e —_ — N —_
ki) {_e cs0 P TaN e Pty

By means of (15) the shape of micro-undulations is given by parameters o, f§, which describe in
the averaged form (on a macro-level) the effect of boundary imperfections on contact pressure
distribution. These parameters can be calculated for every material after specifying function 4(+).

The half-width of the contact area a, and the load P, in the corresponding problem for the
half-space are connected by the relation (see e.g. Timoshenko and Goodier, 1934)

2P,R1—v
Toou

ay =

The value of a, in eqn (23) is unknown and may be obtained by the iteration procedure from
the extra conditions (25). We can also apply simplified approach in which the width of the contact
area is assumed to be equal to that of the Hertz problem, i.e. ay/a, = 1, but the load P related to
this contact zone is unknown. In this case the integral equation (23) and the condition (24) are
sufficient to determine the contact pressure p*(s) and the ratio P/P.

5. Numerical solution of the integral equation

Equation (23) is a Cauchy-type singular integral equation for the contact pressure. The function
p*(s) may be taken in the form
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) =/ 1=50(), [sI<1 (26)

where ¢(s) is a regular unknown function.

For the numerical solution of the system of the singular integral equations (23), (24) we use the
Gauss—Chebyshev quadrature method (see e.g. Belotserkovskij and Lifanov, 1985). The discretized
forms of these equations are

@)W : 2p
_ Z AL +ﬁ0 Z (p(nk)kal (Sm_nk) = _77Hsma m = 15"'9n+1 (27)

T=1 Sm— Nk k=1 n P
n

2 otwe =1 (28)

where

_ kn o, kn =1
He = COS ol wk—n+151n ol =1,...,n

0 = cos | 27 ] =1 +1
sp=cos| o ol m=1n

The regularized parameter y,, is introduced in the system of linear algebraic eqns (27), (28). It
is known (see e.g. Belotserkovskij and Lifanov, 1985) that the condition

lim 7, = 0 (29)

provides a unique solution. In the numerical procedure the condition (29) serves for the deter-
mination of the number 7.

The system of n+ 2 linear algebraic eqns (27), (28) is sufficient to find the 7+ 2 unknowns: ¢(#,),
k=1,...,n v, Py/P.

6. Results

The aim of the numerical analysis is to display the roughness effect on the solution of the contact
problem. The dimensionless coefficients o, ff, are independent parameters of the problem; we have
explained in Section 3 that they depend on the shape of boundary micro-undulations but are
independent of their size.

Figure 2 shows the dependence of the ratio P/P,, with the change of the microgeometry parameter
o, for some values of the second coefficient f,. In the case of the plane boundary the ratio P/Py is
equal to one. This result is obtained at o, — 0 for all values of the parameter f,. It was shown that
the ratio P/P, decreases with the parameter o, This effect is greater for the increasing of the
parameter f5,. Thus, the force P which is needed to obtain the contact region ¢ = a in the case of
micro-undulated boundary is smaller than that in the case of plane boundary. It is clear that the
contact area in the considered problem is greater than Hertz contact zone.

The distribution of the dimensionless contact pressure p*(s) in the contact region (—1,1) is
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Fig. 2. The effect of parameter o, on ratio P/P, for different values of coefficient f3,,.

presented in Fig. 3 for f, = 2.0 and for four values of the parameter o,. The line oy = 0 corresponds
to the Hertz distribution. The growth of the roughness parameter o, leads to the decreasing of the
maximum value of the contact pressure in the center of the contact area.

7. Conclusions

Two main features of the proposed micro-undulated contact zone model can be mentioned.
First, it is based on the micromodelling procedure and hence all coeflicients can be obtained
analytically by the averaging of the microgeometry of the contact area. Second, it was shown that
the problem on the macro-level is affected also by the curvature of the deformed contact surface
since the governing eqn (14) we deal with the term 2¢w, ;,. Hence the main conclusion of the paper
is that the proposed two-parameter model (14) constitutes a certain generation of the known
Winkler-type model of the contact problem introduced in Shtayerman (1949). Moreover, the
obtained solution to the contact problem shows that the model proposed can be applied to the
investigation of special engineering problems.
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Fig. 3. Normalized contact pressure p*(s) as a function of «, at fixed value f,.

References

Belotserkovskij, S.M., Lifanov, I.K., 1985. Numerical Methods in the Singular Integral Equations. Nauka, Moscow.

Jikov, V.V., Kozlov, S.M., Oleinik, O.A., 1994. Homogenization of Differential Operators and Integral Functionals.
Springer Verlag, Berlin.

Shtayerman, 1.Y., 1949. Contact Problem of Theory of Elasticity. Gostekhtheorizdat, Moscow, Leningrad.

Timoshenko, S.P., Goodier, J.N., 1934. Theory of Elasticity. McGraw-Hill, Maidenhead.

Vlasov, V.Z., Leontiev, N.N., 1960. Beams, Plates and Shells on Elastic Foundation. Gos. 1zd. Fiz. Mat., Moscow.

Wozniak, Cz., 1993. Refined macrodynamics of periodic structures. Arch. Mech. 45, 295-304.



